Failure Evaluation of Electronic Products Based on Double Hierarchy Hesitant Fuzzy Linguistic Term Set and K-Means Clustering Algorithm

نویسندگان

چکیده

The extent of failure evaluation depends on the complexity and significance electronic products. However, traditional mode effect analysis (FMEA) has many shortcomings, which brings large difficulty to evaluating work. This paper uses double hierarchy hesitant fuzzy linguistic term set (DHHFLTS) K-means clustering algorithm improve shortcomings FMEA. DHHFLTS is a language terms based symmetry method uniform granularity. Firstly, we determine product up an team after formulating symmetrical set. psychological changes evaluators can be truly expressed by using DHHFLTS. Secondly, entropy weight used calculate members. information personnel aggregated Then, distance between modes each cluster center point normalized influencing factors evaluator. Finally, electromagnet taken as example prove objectivity practicability new method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

persistent k-means: stable data clustering algorithm based on k-means algorithm

identifying clusters or clustering is an important aspect of data analysis. it is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. it is a main task of exploratory data mining, and a common technique for statistical data analysis this paper proposed an improved version of k-means algorithm, namely persistent k...

متن کامل

Enhanced Clustering Based on K-means Clustering Algorithm and Proposed Genetic Algorithm with K-means Clustering

-In this paper targeted a variety of techniques, tactics and distinctive areas of the studies that are useful and marked because the crucial discipline of information mining technologies. The overall purpose of the system of statistics mining is to extract beneficial facts from a large set of information and changing it right into a shape that is comprehensible for in addition use. Clustering i...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Agglomerative Fuzzy K-Means Clustering Algorithm

Introduction CLUSTERING is a process of grouping a set of objects into clusters so that the objects in the same cluster have high similarity but are very dissimilar with objects in other clusters. The K-Means algorithm is well known for its efficiency in clustering large data sets. Fuzzy versions of the K-Means algorithm have been reported by Ruspini and Bezdek, where each pattern is allowed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14122555